

UiO : University of Oslo

Application of blending splines in interactive geometric modeling

Supervisor Prof. Arne Lakså, UiT - Narvik

Co-supervisor Prof. Knut Mørken, UiO Jostein Bratlie UiT The Arctic University of Norway R&D group Simulations - Narvik

2021-06-11

Outline

- The PhD project
- Blending Spline Constructions
- Applications in interactive geometric modeling
 - Papers I and II
- Contributions to Blending Splines
 - Papers III and V
- Prototyping of Differential Geometry
 - Paper IV

The PhD Project

- Part of the NRC Verdict "Dreamworld Project", (project no. 201511)
 - Initial partners NuC (now UiT Narvik R&D Simulations) and Funcom
 - UiO through NuC as a doctoral program provider
 - Project goals: social gaming, easy access, seamless world, and data representation and reduction
- PhD Research Objectives
 - Explore the **blending spline constructions** and their unique properties,
 - within Interactivity Geometric Modeling, and
 - for Animation related purposes.

Blending Spline Constructions

Blending spline constructions (GERBS : ERBS/LERBS)

$$C(u) = \sum_{i=1}^{n} \bar{C}_i(u) \ B_i(u)$$

$$S(u,v) = \sum_{i=1}^{n_u} \sum_{j=1}^{n_v} \bar{L}_{i,j}(u,v) \ B_j(v) \ B_i(u)$$

[DBL09] "Generalized Expo-Rational B-Splines", Dechevsky, Bang, Lakså, IJPAM, 2009 [LBD05] "Exploring Expo-Rational B-splines for Curves and Surfaces", Lakså, Bang, Dechevsky, 2005

Blending spline constructions - basis function

Blending spline basis

B-function

Blerh (t B 3 eq.21(t)

> 0.20.4 0.6 0.8

LERB and Fabius plots

P1: B(t) : [0, 1] => [0, 1], P2: B(t) has fixed end points, P3: is continuous and monotone. P4: is point-symmetric, and **P5**: has an Hermite order; $S \ge 0$

[DZ13] "Smooth GERBS, orthogonal systems and energy minimization", Dechevsky, Zanaty, 2013 [Olo19] "Blending functions based on trigonometric and polynomial approximations of the Fabius function", Olofsen, 2019

Blending spline constructions - organization

Two-function blending, [Lak13]

$$f(t) = \sum_{i=1}^{n} \ell_i(t) B_{d=1,i}(t) \quad f(t) = (1 - \mathfrak{B}(t)) \ell_1(t) + \mathfrak{B}(t) \ell_2(t) \\ = \ell_1(t) + (\ell_2(t) - \ell_1(t)) \mathfrak{B}(t) \\ = \sum_{i=1}^{n} \ell_i(t) B_i(t)$$

General derivation formulae

$$f^{(j)}(t) = \ell_1^{(j)}(t) + \sum_{i=0}^j \binom{j}{i} \mathfrak{B}^{(i)}(t) (\ell_2(t) - \ell_1(t))^{(j-i)}(t)$$

Vanishing derivatives

 $f^{(j)}(0) = \ell_1^{(j)}(0), \quad j = 0, 1, \dots, S_1$ $f^{(j)}(1) = \ell_2^{(j)}(1), \quad j = 0, 1, \dots, S_2$

[Lak13] "ERBS-surface construction on irregular grids", Lakså, 2013 [LakYY] "Bending techniques in Curve and Surface constructions", Arne Lakså, Unpublished.

Blending spline constructions - free forming shapes

Papers I and II

Applications in interactive geometric modeling

Applications in IGM : keyframing and speed control

Key properties

- Interpolates each local coefficient
- Local has embedding
- Vanishing derivatives
- C^k-smooth while G⁰-smooth

Coefsicents, global and local functions

Coeficients, global function and derivatives

Applications in IGM : skinning

Key properties

- Interpolates each local coefficient
- Local has embedding
- Vanishing derivatives
- C^k-smooth while G⁰-smooth

Skinning without volumetrics, [HBD14]

Skinning concept

[HBD14] "Surface deformation over flexible joints using spline blending techniques", Haavardsholm, Bratlie, Dalmo, 2014

Applications in IGM : warping

Key properties

- Interpolates each local coefficient
- Local has embedding
- Vanishing derivatives
- C^k-smooth while G⁰-smooth

Holeshaping using custom locals and double knots, [PBD15]

Paper I, [Bra13] Local refinement of GERBS surfaces

[Bra13] "Local refinement of GERBS surfaces with applications to interactive geometric modeling", Bratlie, 2013

Local refinement of GERBS surfaces, Paper I, [Bra13]

New local on knot insertion (curve)

Motivation

- Knot insertion => rational local
- Preserve geometry on refinement
- Insert modeling friendly local

Refinement by blending

- Two schemes:
 - Multi-knot and multi-level

Local refinement of GERBS surfaces, Paper I, [Bra13]

Knot based refinement

Refinement knots have an order

$$S_n = S_{n-1} + (S_{r,n} - S_{n-1}) A \circ \lambda(r_n),$$

$$S_0 = G + (S_{r,0} - G) A \circ \lambda(r_0)$$

Level based refinement

• Refinement patch refined

Sn = G_n + (S_{n-1} - G_n) A
$$\circ$$
 λ(\hat{r}_n),
S0 = G₀ + (S_{r,0} - G₀) A \circ λ(\hat{r}_0)

Paper II, [BDZ14] Fitting of discrete data with GERBS

Fitting of discrete data with GERBS, Paper II, [BDZ14]

Motivation

- Reuse coefficients in locals coefficients
- Applications to model and animation data

Select feature points

- Curvature base partitioning
- Inflexion base partitioning

 \mathbf{p}_1

Benchmark setup

Fitting of discrete data with GERBS, Paper II, [BDZ14]

Smooth benchmark

Oscillating benchmark

Papers III and V

Contributions to Blending Splines

Paper III, [BDB15]

GPU evaluation of blending spline surfaces

[BDB15], "Evaluation of smooth spline blending surfaces using GPU", Bratlie, Dalmo, Bang, 2015

GPU evaluation of blending spline surfaces, Paper III, [BDB15]

Motivation

- Evaluate blending splines on GPU
- Hierarchical, complex, not suited

However

• Patch primitive = BS eval patch

$$\hat{S}(u,v) = \sum_{i=1}^{2} \sum_{i=1}^{2} \bar{L}_{i,j} \circ \omega_{i,j}(u,v) \mathfrak{B}_{j}(v) \mathfrak{B}_{i}(u)$$
$$= \sum_{i=1}^{2} \sum_{i=1}^{2} \hat{L}_{i,j}(u,v) \mathfrak{B}_{j}(v) \mathfrak{B}_{i}(u)$$

Edge requirement

 Equal tessellation factor along adjacent the edges

Example

- 3x3 local surface
- 4 evaluation patches

[BDB15], "Evaluation of smooth spline blending surfaces using GPU", Bratlie, Dalmo, Bang, 2015 [Lak14] "Construction and properties of non-polynomial spline curves", Lakså, 2014

GPU evaluation of blending spline surfaces, Paper III, [BDB15]

Structure dictates two strategies

- Direct evaluation
- Local Pre-evaluation

Examples

- Over T- and Star-joints
- Produced for MMCS 2016, Tønsberg

Paper V, [BD21] Blending surfaces over polygonal mesh

[BD21] "Blending spline polygon surface over arbitrary poly-mesh topology", Bratlie, Dalmo, Under revision

Motivation

- Blending spline construction over polygonal mesh
- "Solved" the GPU evaluation issue
- Publication of Enhanced GB Patches, [VSK16]
- Using modeling friendly local geometry

Challenges

- BS construction inherently parametric
 - (control blend parameter direction across a edge)
- Control parameter direction across edge
- Topology
 - Define parametric domains
 - Knot vectors
- Looked good on paper, challenging to prototype

Topological

Polygonal BS Surface

[BD21] "Blending spline polygon surface over arbitrary poly-mesh topology", Bratlie, Dalmo, Under revision [VSK16] "A Multi-sided Bézier Patch with a Simple Control Structure", Várady, Salvi, Karikó, 2016

Polygonal BS Surface

Local Polygonal Surfaces

Polygonal BS Surface, S, of Patches {\$, ...}

Local Polygonal Surfaces, L, of Patch, Ŝ

Evaluation patch cover, Q

[BD21] "Blending spline polygon surface over arbitrary poly-mesh topology", Bratlie, Dalmo, Under revision

Evaluation patch cover, Q

Local surface cover, Q

[BD21] "Blending spline polygon surface over arbitrary poly-mesh topology", Bratlie, Dalmo, Under revision

Local polygonal, L, and Sub-polygon, L

Local sub-surface covers, $Q_{\hat{a}}$

Local surface cover, Q

Local Domain Mapping Patchwork, Γ

Reparameterization of Q to Q_{d} through Γ

[BD21] "Blending spline polygon surface over arbitrary poly-mesh topology", Bratlie, Dalmo, Under revision

Blending basis functions for s- and h-direction.

Side-based parameters, [SVR14]

Knot vector from graph, Π - multiplicity $\pi^{\sigma},$ edge distance, π^{ϕ}

[BD21] "Blending spline polygon surface over arbitrary poly-mesh topology", Bratlie, Dalmo, Under revision [SVR14] "Ribbon-based transfinite surfaces", Salvi, Várady, Rockwood, 2014

Interpolation of poly-mesh heightmap, with local approximation

[BD21] "Blending spline polygon surface over arbitrary poly-mesh topology", Bratlie, Dalmo, Under revision

Isophote smoothness across edges

Paper IV

Differential Geometry Prototyping

Differential Geometry Prototyping

Paper IV, [BD19]

Prototyping geometric modeling: C++

[BD19] "Exploring future C++ features within a geometric modeling context", Bratlie, Dalmo, 2019

Motivation

Aid Prototyping of Geometric Constructions

C++ (17)

- Generic Programming Mechanism: templates
 - Creates generic code fragment candidates Ο
- Low overhead
 - Unused candidates removed at compile time \cap
- •

Defining a set of idioms or techniques

- Non-intrusive inheritance •
- Semantic compile-time (static) polymorphism
- Aggregated properties and transitive constructors

Explore future features (20++ and beyond)

Concepts, Contracts, Reflection and Meta-Classes

Non-intrusive inheritance

Semantic compile-time (static) polymorphism

Semantic compile-time (static) polymorphism

0	ObjectM = Object : KernelM : Base
e e	evaluate() evaluate(Mass)

ObjectA = Object : KernelL : Base
evaluate() evaluate(Length)

Aggregated properties and Transitive constructors

Aggregated properties and Transitive constructors

ObjectT = Object

MySubObject = SubObject

 $evaluate(Length) \rightarrow object.evaluate(length)$

Used to solve the following challenges

- Pseudo-reflection
- Dimension-aware initial values in generic members
- Generic sub-domain object deduction
- Static deduction of differential operators

Concepts

- C++ has two types of placeholder-types
 - **auto** : the type of a value {aka. type}
 - **typename** : the name of a type {aka. type name}
- Concepts adds restrictions
 - Curve auto v
 Type of V must fulfill requirements of Curve
 - template<Sortable T> : Type T must fulfill requirements of sortable
- Helps with
 - Overloadable => fixes SFINAE
 - Abstract on basis of concepts rather than types
 - Better error from compiler: "container cannot be sorted because"

Contracts

- Programmatically document Invariants
 - Runtime requirements: value of $\mathbf{t} = [0, 1]$
- Valid on
 - parameters (expects), function return value (ensures), runtime (assert)
- Auditable

Reflection / Meta-classes

- Ask a type what members and types it has (meta-information)
- Extend the **language** as libraries extend a program
 - Create new user-defined types other than struct/class
 - Interface, point, curve, etc.
 - Remove tedious and error prone overhead

Thank you for your attention ^^,

